This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Spiro-Azoles Thiazolidinone in the Synthesis of Polymethine Cyanine Dyes

Reda Mahmoud Abd El-Aala

^a South Valley University, Aswan, Egypt

Online publication date: 27 October 2010

To cite this Article El-Aal, Reda Mahmoud Abd(2003) 'Spiro-Azoles Thiazolidinone in the Synthesis of Polymethine Cyanine Dyes', Phosphorus, Sulfur, and Silicon and the Related Elements, 178:4,681-692

To link to this Article: DOI: 10.1080/10426500307791 URL: http://dx.doi.org/10.1080/10426500307791

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur and Silicon, 2003, Vol. 178:681–692 Copyright © 2003 Taylor & Francis

1042-6507/03 \$12.00 + .00

DOI: 10.1080/10426500390197896

SPIRO-AZOLES THIAZOLIDINONE IN THE SYNTHESIS OF POLYMETHINE CYANINE DYES

Reda Mahmoud Abd El-Aal South Valley University, Aswan, Egypt

(Received November 30, 2001; accepted June 4, 2002)

A series of some spiro azoles (pyrazolone, oxazolone, and/or imidazolone) inconjucton with heterocyclic thiazolidinone derivatives were prepared as starting materials in the synthesis of polymethine cyanine dyes. Reaction of spiro 2-formyl (oxime) azoles thiazolidinone derivatives with equi- and/or molar ratios of 2(4)-methyl substituted heterocyclic quaternary salts afforded the corresponding compound pentamethine, aza-mero cyanine, and azapentamethine cyanine dyes respectively. Elemental analyses, IR, ¹H-NMR, and mass-spectra identified the new spiro heterocyclic compounds and polymethine cyanine dyes. The visible absorption spectra of all new polymethine cyanine dyes were investigated.

Keywords: Electronic absorption spectra; photodynamic therapy; quaternary salts; sensitizer in photographic

Much work has been carried out on the synthesis of assembled heterocyclic systems to prepare and study the properties of different types of cyanine dyes. $^{1-5}$ Little attention has been focused on the use of spiro heterocycles in the synthesis of polymethine cyanine dyes. Thiazolidinone compounds have been subjects of extensive efforts in the recent past of Divers biological activities, 6,7 such as bactericidal, fungicidal, insecticide, tuberoculostic, that are associated with thiazolidinone derivatives. Cyanine dyes are used as spectral sensitizer in photographic emulsions and as potential sensitizer for photodynamic therapy. In recent years, some patents have reported that pentamethine cyanine dyes showing good sensitivity and reflection to ~ 680 nm wavelength laser. $^{10-12}$

Address correspondence to Reda Mahmoud Abd El-Aal, Chemistry Department, Faculty of Science, South Valley University, Aswan, 81528, Egypt. E-mail: abdelaal2001@yahoo.com

ζ J+UIJ TADIELA

TABLE	TABLE I Characterization Data of Heterocyclic Compounds 2a-2e, 3a-3e, and 4a-4e	tion Da	ta of H	eterocyc	lic Com	z spunoc	a-2e, 3a-3e, a	nd 4a–4 e	
Compd	Mol. formula	Calco	Calcd %, Found %	% pu	Yield	m.p.	IR(vKBr)	$^{1}\mathrm{H-NMR}$ (CDCl $_{3}$	
no.	(mol. wt)	C	Н	z	(%)	(D _o)	cm^{-1}	δ Assignment	\mathbf{M}^{+}
2a	$C_{16}\mathrm{H}_{13}\mathrm{N}_{3}\mathrm{O}_{2}\\ (279)$	68.82 68.51	4.66	15.05 14.79	95	146–8	3340 (OH) 1580 (=CN) 1690 (C=O)	1.08 (s, 3H, CH ₃ pyrazol.) 4.5 (s, 1H, OH) 6 9_7 8 (m, 9H, Ar—H)	280
2b	$\mathrm{C}_{20}\mathrm{H}_{15}\mathrm{N}_{3}\mathrm{O}_{2}$	72.75	4.56	12.77	93	237–9		(11) (11) (11) (11)	
2c	$ m C_{20}H_{15}N_{3}O_{2}$	72.75	4.56	12.77	89	286-8	3340 (OH)	1.09 (s, 3H, CH ₃ pyrazol.)	328
	(328)	72.47	4.41	12.63			1585 (CEN) 1698 (CEO)	4.6 (s, 1H, OH) 6.8–7.8 (m, 11H, Ar.—H)	
2 d	$\mathrm{C_{14}H_{10}N_2O_3}\ (254)$	66.14 66.01	3.94 4.15	11.02 11.33	87	130–2	3340 (OH) 1585 (C=N)	1.2 (s, 1H, CH ₃ oxazol) 4.7 (s, 1H, OH)	253
							1698 (C=O)	6.85–7.8 (m, 6H, Ar.–H)	
2e	$ m C_{14}H_9N_3O_3 \ (267)$	62.92	3.37	15.73	73	110-2		8.7 (s, 2H, 2NH), 4.8 (s, 1H, OH) 6.9–7.75 (m, 6H, Ar—H)	
3a	$C_{18}H_{15}N_3O_3S$	61.19	4.25	11.90	92	117-9	3350 (OH)	1.1 (s, 3H, CH ₃ pyrazol.)	
	(353)	68.09	4.01	12.21			1595 (C=N) 1690 (C=O)	4.5 (s, 1H, OH) 6.7-7.8 (m, 11H, ArH + hetH)	
3b	$ ext{C}_{22} ext{H}_{17} ext{N}_3 ext{O}_3 ext{S} \ (403)$	65.51 65.87	4.22	10.42 10.23	77	132–4	3350 (OH) 1595 (C=N)	1.1 (s, 3H, CH ₃ pyrazol.) 4.5 (s, 1H, OH)	
							1690 (C=O)	6.7-7.8 (m, 13H, ArH + hetH)	
3c	${ m C}_{22}{ m H}_{17}{ m N}_3{ m O}_3{ m S}$	65.51	4.22	10.42	75	212-4			
	(403)	65.17	4.49	10.03					

76	o O N H C	0 1	22 6	0 14	7	110 4		19 (2.1U CU cmcm)
ne	$C_{16}^{-1}_{12}^{-1}_{12}^{-1}_{204}^{-2}_{328}^{-1}$	59.01		8.63	1	112-4		1.2 (s, 111, C113 0xazon) 4.7 (s, 1H, OH)
								6.7-7.8 (m, 8H, Ar-H)
3e	$\mathrm{C}_{16}\mathrm{H}_{11}\mathrm{N}_{3}\mathrm{O}_{4}\mathrm{S}$	56.31	3.23	12.32	79	8-98		
	(341)	56.69	3.35	12.55				
4a	$\mathrm{C}_{19}\mathrm{H}_{14}\mathrm{N}_3\mathrm{O}_3\mathrm{SCI}$	57.07	3.50	10.51	29	181 - 3	1735 (CHO)	1.1 (s, 3H, CH ₃ pyrazol.)
	(399.5)	56.89	3.53	10.67			1690 (C=0)	4.7 (s, 1H, OH), 9.5 (s, 1H, CHO)
							1230 (C-N-C)	6.7-7.8 (m, 9H, ArH + hetH)
4 b	$C_{23}H_{16}N_3O_3SC1$	62.32	3.56	9.34	81	210-2		
	(449.5)	62.43	3.71	9.19				
4 c	$C_{23}H_{16}N_3O_3SC1$	62.32	3.56	9.34	79	254 - 6		
	(449.5)	62.63	3.31	69.6				
4 d	$\mathrm{C}_{17}\mathrm{H}_{11}\mathrm{N}_{2}\mathrm{O}_{4}\mathrm{SCI}$	54.47	2.94	7.48	55	175-7	1735 (CHO)	$1.2 (s, 1H, CH_3 oxazol)$
	(374.5)	54.69	3.11	7.39			1690 (C=0)	4.7 (s, 1H, OH), 9.7 (s, 1H, CHO)
							1230 (C-N-C)	6.7-7.8 (m, 6H, Ar.—H)
4e	$\mathrm{C}_{17}\mathrm{H}_{10}\mathrm{N}_3\mathrm{O}_4\mathrm{SCI}$	52.65	2.58	10.84	49	1180-2	1730 (CHO)	8.7 (s, 2H, 2NH), 4.8 (s, 1H, OH)
	(387.5)	52.49	3.01	10.55			1698 (C=O)	6.9-7.75 (m, 6H, ArH), 9.7 (s, 1H, CHO)
							1235 (C-N-C)	

The object of this investigation is to report the synthesis and electronic absorption spectra in ethanolic solution in the hope that we might discover new photosensitization effects.

Results and Discussion

Reaction of 1 mmol amount ratio of 3-methyl-1-phenylpyrazol-5-one, 2-methyoxazol-5-one and imidazol-2,4-dione **1a-1c**¹³ with 1 mmol amounts of nitroso compounds such as p-nitrosophenol and a (β) nitroso-naphthols in basic catalyst afforded the corresponding of 4-aryl (naphthyl)-imino-azole derivatives 2a-2e as Shiff base compounds. Elemental analyses, IR, ¹H-NMR, and MS spectral were confirmed the structures of compounds 2a-2e. Thus, IR showed general absorption spectra at 1698–1690 cm⁻¹ (C=O), 1585 cm⁻¹ (C=N), 3340–3360 cm⁻¹ (OH), ¹H-NMR (CDCl₃) reveal general signals at δ 4.5–4.7 (s, 1H, OH), 1.0–1.1 (s, 3H, CH₃), 6.9–7.8 (m, 9H, Ar–H) for compound **2a** and 6.7– 7.7 (m, 11H, Ar–H) for compound **2b**, Table I. The newly synthesized Shiff base compounds **2a–2e** were considered as structures for the synthesis of new spiro-4-azolo thiazolidinone derivatives. Thus, cycloaddition reaction of equimolar ratio of thioglycolic acid with the previously compounds 2a-2e in boiling benzene using water separator for five days¹⁴ afforded the spiro-4-azolo thiazolidinone derivatives **3a-3e**. The structures of these compounds were proved by elemental analyses, IR, ¹H-NMR, and MS spectral data. Thus, IR showed general absorption spectra at 1698–1690 cm⁻¹ (C=O), 1585 cm⁻¹ (C=N), 3340–3360 cm⁻¹ (OH), ¹H-NMR (CDCl₃) reveal general signals at 4.6–4.9 (s, 1H, OH), 6.8-7.9 (m, 8H, Ar-H + het.-H), 1.25 (s, 3H, CH₃), for compound 3d and 8.7 (s, 2H, NH), for compound 3e, Table I. Compounds 3a-3e treated with phosphorus oxychloride in dimethylformamide in the room temperature afforded the corresponding compounds 4-chloro-5-formyl spiro-4-azolo thiazolidinone derivatives 4a-4e. Reaction of a ratio of 1 mmol amount **4a-4e** with 2 mmol amounts of 2(4)-methyl substituted heterocyclic quaternary salts in the presence of acetic anhydride 16 resulted in pentamethine cyanine dyes 5a-5g. The structures of compounds 4a-4e and 5a-5g were confirmed by elemental analyses, IR, ¹H-NMR, and MS spectral data, Tables I and II.

Reaction of spiro-4-azolo thiazolidinone derivatives **3a-3e** with nitrous acid afforded the corresponding compounds 2-oxime-spiro-4-azolo thiazolidinone derivatives **6a-6e**. These newly synthesized oxime compounds **6a-6e** were considered as a key intermediate in the synthesis of aza-mero cyanine dyes **7a-7g** and aza-pentamethine cyanine dyes **8a-8g** respectively. Thus, reaction of a ratio of 1 mmol amount of 2-oxime-spiro-4-azolo thiazolidinone derivatives **6a-6e** with 1 or 2 mmol

TABLE II Characterization Data of Intermediate Compounds 5a-5f and Heptamethine Cyanine Dyes 6a-6f

Compd.	Mol. formula	Calco	Calcd %, Found %	% pu	Yield	m.p.	$\operatorname{IR}_{(V_{\mathbf{m}}^{\mathbf{KBr}})}$	$^{1}\mathrm{H-NMR}$ (CDCI $_{3}$	
no.	(mol. wt)	С	Η	N	(%)	(O _o)	cm^{-1}	δ Assignment	\mathbf{M}^{+}
ба	$C_{33}H_{30}N_5O_2SI$ (687)	57.64 57.07	4.37	10.19 10.34	57	120-2	860–840 (CH=CH) 1698 (C=O) 2940 (CH ₃ I)	6.5–7.8 (m, 20H, Ar—H + CH=CH), 4.5 (s, 1H, OH), 3.9 (s, 3H, CH ₃ N ⁺) 1.25 (s, 3H, CH ₂), 1.09 (s, 3H, CH ₂)	
5 b	$C_{41}H_{34}N_5O_2SI$ (787)	62.52 62.11	4.32	8.90 9.03	88	173–5	860–840 (CH=CH) 1690 (C=O) 2960 (CH ₂ I)		
5c	$C_{33}H_{30}N_5O_2SI_{(687)}$	57.64	4.37	10.19	29	135-7	2000 (01131)		
2 q	$C_{45}H_{36}N_{5}O_{2}SI$ (837)	64.52 64.37	4.59	8.36	85	142–4	860–840 (CH=CH) 1690 (C=O) 9960 (CH ₂ I)	6.6–7.8 (m, 26H, A1—H + CH=CH), 4.6 (s, 1H, OH), 3.9 (s, 3H, CH ₃ N ⁺) 1.4 (s, 3H, CH ₅) 1.1 (s, 3H, CH ₅)	
5e	$C_{45}H_{36}N_{5}O_{2}SI_{(837)}$	64.52	4.30	8.36	87	210-2	(1911)	(c) (d.) (d.), (c) (d.) (d.)	
5f	$C_{39}H_{31}N_4O_3SI$ (762)	61.42	4.43	7.35	73	177-9	860–840 (CH=CH) 1690 (C=O) 2960 (CH ₂ I)	6.5–7.7 (m, 21H, Ar–H + CH=CH), 4.6 (s, 1H, OH), 8.9 (s, 3H, CH ₃ N ⁺) 14 (s, 3H CH ₂), 1.2 (s, 3H CH ₂)	
5g	$ ext{C}_{39} ext{H}_{30} ext{N}_{5} ext{O}_{3} ext{SI} \ (775)$	60.39	3.87	9.03 8.91	62	172–4	860–840 (CH=CH) 1690 (C=O) 2960 (CH ₂ I)	6.6–78 (m, 21H, Ar–H + CH=CH), 8.5 (s, 2H, 2NH), 4.7 (s, 1H, OH), 3.9 (s, 3H, CH ₂ N+), 1.95 (s, 3H, CH ₂)	
6 a	$C_{18}H_{14}N_4O_4S$ (382)	56.55 56.77	3.33	14.66 14.25	77	124–6	1640 (C=N-oxime) 1690 (C=O) 3650-3500 (OH)	6.9–7.8 (m, 9H, Ar—H), 4.8 (s, 1H, 0H), 9.8 (s, 1H, C=N-OH), 1.05 (s, 3H, CH ₃)	383
6 b	$ ext{C}_{22} ext{H}_{16} ext{N}_4 ext{O}_4 ext{S} \ (432)$	61.11	3.70	12.96 12.85	81	146-8			
99	$C_{22}H_{16}N_4O_4S$ (432)	61.11	3.70	12.96	71	230-2			
p 9	$C_{16}H_{11}N_3O_5S$ (357)	53.78	3.08	11.77	69	6-22	1630 (C=N-oxime) 1700 (C=O) 3650-3500 (OH)	7.1–7.9 (m, 6H, Ar—H), 4.6 (s, 1H, OH), 10.5 (s, 1H, C=N—OH), 1.2 (s, 3H, CH ₃)	356
99	$C_{16}H_{10}N_4O_5S$ (370)	51.89 51.93	2.70 3.05	15.14 14.93	89	128	1640 (C=N-oxime) 1690 (C=O) 3650-3500(OH)	7.0–7.8 (m, 6H, Ar—H), 4.7 (s, 1H, OH), 9.7 (s, 1H, C=N—OH), 8.5 (s, 2H, 2NH)	

amounts of 2(4)-methyl heterocyclic quaternary salts in the presence of basic catalyst afforded the corresponding spiro-4-azolo thiazolidinone-4[2(4)] aza-mero cyanine dyes 7a-7g and 4,5[2(4)]-aza-pentamethine cyanine dyes 8a-8g respectively (Scheme 1). Elemental analyses and

SCHEME 1

IR and 1 H-NMR spectra confirmed the structures of compounds **7a–7g** and **8a–8g**. Thus, IR showed general absorption spectra of compounds **7a–7g** and **8a–8g** 1700–1690 cm⁻¹ (C=O), 1590 cm⁻¹ (C=N), 3340 cm⁻¹ (OH), 2980 cm⁻¹ (Mel) and 1 H-NMR (CDCl₃) reveal general signals at 4.6 (s, 1H, OH), 6.5–7.8 (m, 13H, Ar–H + CH=), 1.25 (s, 3H, CH₃), 1.15 (s, 3H, CH₃) for compound **7f** and 4.7 (s, 1H, OH), 6.6–7.9 (m, 20H, Ar–H + CH=), 1.2 (s, 3H, CH₃), 1.15 (s, 3H, CH₃) 3.9 (s, 3H, CH₃) N⁺) for compound **8f** (Table III).

The newly synthesized pentamethine 5a-5g, aza-merocyanine dyes 7a-7g and aza-pentamethine cyanine dyes 8a-8g were highly colored and fairly soluble in polar organic solvents giving a green fluorescence. These cyanine dyes were only sparingly soluble in nonpolar solvents and soluble in conc. H_2SO_4 liberating iodine vapor on warming.

Effect of Molecular Structure on the Electronic Absorption Spectra of the Synthesized Cyanine Dyes

The electronic absorption spectral features ($_{max.}$ and $_{max.}$ values) of the newly synthesized cyanine dyes 5a-5g, 7a-7g, and 8a-8g in ethanolic solutions are depicted in Table IV.

The visible absorption spectra of pentamethine cyanine dyes $\bf 5a-5g$, aza-mero cyanine $\bf 7a-7g$, and aza-pentamethine cyanine dyes $\bf 8a-8g$ in 95% ethanol undergo bathochromic or hypsochromic shifts depending on the nature of the quaternary residue A. Thus, substituting of $\bf A=1$ -methylpyridin-2-ium salt moiety in compound $\bf 5a$ by $\bf A=1$ -methylquinolin-2-ium salt moiety in compound $\bf 5b$ resulted in bathochromic shifts of 15–195 nm accompanied with the appearance of one band at 585 nm. This could be attributed to the more extensive -conjugation in compound $\bf 5b$. Also, the visible absorption spectra of the newly synthesized cyanine dyes were influenced by the aryl and naphthyl groups. Thus, substituting of $\bf R=aryl$ moiety in compound $\bf 7b$ by the $\bf R=naphthyl$ moiety in compound $\bf 7d$ causes bathochromic shifts of 5–45 nm. This is due to increasing the conjugation in compound $\bf 7d$ (Table IV).

EXPERIMENTAL

Melting points were recorded on a Gallenkamp melting point apparatus and are uncorrected. Elemental analyses were carried out at the Microanalytical Center at Cairo University. Infrared were determined on a Perkin Elmer Infrared 1650 FT-IR instrument, visible spectra (300–700 nm) were recorded on a Shimadzu-UV-Visible-160 spectrophotometer. ¹H-NMR spectra were recorded on an EM-390 90 MHz

TABLE III Characterization Data of Aza-Mero 7a-7g and Aza-Pentamethine Cyanine Dyes 8a-8gf

						,		ò
Compd.	Mol. formula	Calco	Calcd %, Found %	% pur	Yield	m.p.	$\mathrm{IR}(u_{\mathrm{mag}}^{\mathrm{KBr}})$	¹ H-NMR(CDCl ₃)
no.	(mol. wt)	C	Н	N	(%)	(D ₀)	cm^{-1}	δ Assignment
7a	$\mathrm{C}_{25}\mathrm{H}_{21}\mathrm{N}_5\mathrm{O}_3\mathrm{S}$	63.69	4.46	14.86	78	210-2	1590 (C=N)	6.7-7.8 (m, 14H, Ar-H + CH=N),
	(471)	63.47	4.37	14.64			1700 (C=0) 3340 (OH)	4.5 (s, 1H, OH), 1.25 (s, 3H, CH ₃), 1.09 (s, 3H, CH ₃)
7 b	$C_{29}H_{23}N_5O_3S$	66.80	4.42	13.44	83	144-6		
	(521)	66.71	4.53	13.13				
7c	$C_{25}H_{21}N_5O_3S$	63.69	4.46	14.86	75	230 - 2		
	(471)	63.79	4.27	15.04				
7 d	$C_{33}H_{25}N_5O_3S$	69.35	4.38	12.26	77	160-2	1590 (C-N)	6.6-7.8 (m, 18H, Ar-H + CH=N),
	(571)	68.97	4.55	11.95			1700 (C=0)	4.6 (s, 1H, OH), 1.3 (s, 3H, CH ₃),
							3340(OH)	$1.1 (s, 3H, CH_3)$
7e	${ m C}_{33}{ m H}_{25}{ m N}_5{ m O}_3{ m S}$	69.35	4.38	12.26	42	190-2		
	(571)	69.62	4.25	12.35				
JL	$\mathrm{C}_{27}\mathrm{H}_{20}\mathrm{N}_4\mathrm{O}_4\mathrm{S}$	65.32	4.03	11.29	75	120-2	1590 (C=N)	6.5-7.8 (m, 13H, Ar-H + CH=N),
	(496)	65.27	3.88	11.11			1698 (C=0)	4.6 (s, 1H, OH), 1.4 (s, 3H, CH ₃),
							3360 (OH)	$1.2 (s, 3H, CH_3)$
7g	$\mathrm{C}_{27}\mathrm{H}_{19}\mathrm{N}_5\mathrm{O}_4\mathrm{S}$	63.65	3.73	13.75	85	142-4	1585 (C=N)	6.4-7.8 (m, 13H, Ar-H + CH=N),
	(206)	63.55	4.09	13.93			1690 (C=0)	8.5 (s, 2H, 2NH), 4.7 (s, 1H, OH),
							3400 (OH, NH)	$1.2 (s, 3H, CH_3)$
8a	$\mathrm{C_{32}H_{29}N_6O_2SI}$	55.81	4.22	12.21	85	240-2	1580 (C=N)	6.4-7.8 (m, 19H, Ar-H + CH=CH),
	(889)	56.17	4.63	12.55			1690 (C=0)	$4.6 (s, 1H, OH), 3.9 (s, 3H, CH_3N^+)$
							$2960 (\mathrm{CH_3I})$	1.2 (s, 3H, CH ₃), 1.07 (s, 3H, CH ₃)

98	$\mathrm{C}_{36}\mathrm{H}_{31}\mathrm{N}_{6}\mathrm{O}_{2}\mathrm{SI}$	58.54	4.20	11.38	87	162 - 4		
	(738)	58.87	4.53	11.15				
8 c	$\mathrm{C_{32}H_{29}N_6O_2SI}$	55.81	4.22	12.21	71	230-2		
	(889)	56.19	4.43	12.53				
8 q	$C_{44}H_{35}N_6O_2SI$	63.01	4.18	10.02	87	162-4	1585 (C=N)	6.5-7.7 (m, 25H, Ar-H + CH=CH),
	(838)	62.79	4.41	9.85			1697 (C=O)	$4.7 (s, 1H, OH), 3.95 (s, 3H, CH_3N^+)$
							$2940 (CH_3I)$	$1.3 (s, 3H, CH_3), 1.09 (s, 3H, CH_3)$
8 e	$\mathrm{C_{44}H_{35}N_6O_2SI}$	63.01	4.18	10.02	83	183-5		
	(838)	62.87	4.11	10.23				
9 t	$\mathrm{C}_{38}\mathrm{H}_{30}\mathrm{N}_5\mathrm{O}_3\mathrm{SI}$	59.76	3.93	9.17	81	165-7	1580 (C=N)	6.6-7.8 (m, 20H, Ar-H + CH=CH),
	(263)	60.07	4.13	9.33			1700 (C=0)	$4.8 (s, 1H, OH), 3.9 (s, 3H, CH_3N^+)$
							$2960 (CH_3I)$	$1.2 (s, 3H, CH_3), 1.1 (s, 3H, CH_3)$
8g	$\mathrm{C}_{38}\mathrm{H}_{29}\mathrm{N}_{6}\mathrm{O}_{3}\mathrm{SI}$	58.76	3.74	10.83	93	150-2	1590 (C=N)	6.5-7.8 (m, 20H, Ar-H + CH=CH),
	(222)		3.93	10.77			1690 (C=0)	8.5 (s, 2H, 2NH), 4.7 (s, 1H, OH),
							$2950 (CH_3I)$	$3.9 (s, 3H, CH_3N^+), 1.2 (s, 3H, CH_3)$

TABLE IV Visible Absorption Spectra^a of the Newly Synthesized Polymethine Cyanie Dyes

	λ _{max} (nm)/ $\log \varepsilon_{ ext{max}}$	$\mathrm{mol^{-1}\ cm^{-1}}$		
	I Pentam	ethine cyani	ne dyes 5a–5 g	g	
5b	5c	5d	5 e	5f	5g
415 (3.66)	420 (3.65)	_	_	_	_
_	_	525 (3.66)	520 (3.32)	_	510 (3.78)
_	_	565 (3.72)	_	_	555 (3.89)
585 (3.68)	_	600 (3.70)	590 (3.95)	580 (3.91)	585 (3.93)
690(2.98)	_	700(2.02)	695(3.22)	$695\ (2.05)$	695 (3.45)
	II Aza-	mero cyanin	e dyes 7a-7g		
7b	7c	7d	7e	7f	7g
sh415 (3.53)	485 (2.95)	sh420 (3.37)	sh410 (3.33)	_	sh410 (3.28)
485 (3.51)	_	530 (3.45)	520 (3.35)	_	525 (3.16)
590 (3.56)	_	595 (3.46)	590 (3.46)	585 (3.11)	565 (3.29)
_	_	_	_	605 (3.15)	610 (3.33)
680(2.90)	_	685 (2.85)	680(2.92)	680(2.68)	680(2.65)
I	II Aza-pent	tamethine cy	anine dyes 8a	-8g	
8b	8c	8d	8e	8f	8g
sh410 (3.64)	_	420 (3.53)	sh400 (3.51)	_	sh410 (3.81)
sh520 (3.77)	490 (3.45)	540 (3.57)	540 (3.75)	sh520 (3.79)	575 (4.13)
595 (3.88)	_	595 (3.60)	585 (3.85)	590 (3.80)	595 (4.14)
695 (3.30)	_	700(2.88)	690 (2.78)	690 (2.90)	695 (3.32)
	415 (3.66) — — — 585 (3.68) 690 (2.98) 7b sh415 (3.53) 485 (3.51) 590 (3.56) — 680 (2.90) I 8b sh410 (3.64) sh520 (3.77) 595 (3.88)	I Pentame 5b 5c	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5b 5c 5d 5e 415 (3.66) 420 (3.65) — — — 525 (3.66) 520 (3.32) — 565 (3.72) — 585 (3.68) — 600 (3.70) 590 (3.95) 690 (2.98) — 700 (2.02) 695 (3.22) II Aza-mero cyanine dyes 7a-7g 7d 7e sh415 (3.53) 485 (2.95) sh420 (3.37) sh410 (3.33) 485 (3.51) — 530 (3.45) 520 (3.35) 590 (3.56) — 595 (3.46) 590 (3.46) — — — — 680 (2.90) — 685 (2.85) 680 (2.92) III Aza-pentamethine cyanine dyes 8a 8b 8c 8d 8e sh410 (3.64) — 420 (3.53) sh400 (3.51) sh520 (3.77) 490 (3.45) 540 (3.57) 540 (3.75) 595 (3.88) — 595 (3.60) 585 (3.85)	I Pentamethine cyanine dyes 5a-5g 5b 5c 5d 5e 5f 415 (3.66) 420 (3.65) — — — — — 525 (3.66) 520 (3.32) — — — 565 (3.72) — — — 585 (3.68) — 600 (3.70) 590 (3.95) 580 (3.91) 690 (2.98) — 700 (2.02) 695 (3.22) 695 (2.05) III Aza-mero cyanine dyes 7a-7g 7b 7c 7d 7e 7f sh415 (3.53) 485 (2.95) sh420 (3.37) sh410 (3.33) — 485 (3.51) — 530 (3.45) 520 (3.35) — 590 (3.56) — 595 (3.46) 590 (3.46) 585 (3.11) — 680 (2.90) — 685 (2.85) 680 (2.92) 680 (2.68) III Aza-pentamethine cyanine dyes 8a-8g 8b 8c 8d 8e 8f sh410 (3.64) — 420 (3.53) sh400 (3.51) — sh520 (3.77) 490 (3.45) 540 (3.57) 540 (3.75)

^aData shown are $\max_{max max} = \log_{max} (\text{mol}^{-1} \text{ cm}^2)$ in parentheses; sh = shoulder.

NMR spectrometer and mass spectra were recorded on an HPMs 6988 spectrometer.

Synthesis of 4-Aryl(naphthyl)-imino-azole Derivatives 2a–2e

A solution of 3-methyl-1-phenylpyrazolone, 2-methyloxazolone, and imidazolone (0.01 mmol) in ethanol (20 ml) was treated with aromatic nitroso compounds (p-nitroso-phenol and ()-nitroso-naphthol) (0.01 mmol) in the presence of catalytic amount of piperidine (0.5 ml). The reaction mixture was refluxed for 7–9 h (monitored TLC). The solvent was then evaporated under reduced pressure and the residue was treated with ice-water. The solid product was collected and crystallized from ethanol. The results are listed in Table I.

Synthesis of Spiro-4-azolo Thiazolidinone Derivatives 3a–3e

A mixture of the imino derivatives **2a–2e** and mercaptoacetic acid (0.01 mmol) in dry benzene was refluxed for 13–15 h. The hot reaction mixture was filtered, concentrated, and boiling water was added. The solid product was collected and crystallized from methanol. Relevant data are listed in Table I.

Synthesis of 3-Chloro-2-formyl-spiro-4-azolo Thiazolidinone Derivatives 4a–4e

To a solution of **3a–3e** (0.02 mmol) in (100 ml) dry dimethylformamide and phosphorous oxychloride (0.02 mmol) was added under stirring in an ice-bath. Stirring was continued at room temperature for 15 min. The solution was heated for 30 min, cooled, and then poured into 400 ml ice-water. The solid product was collected and crystallized from petroleum ether 60–80°C. Relevant data are listed in Table I.

Synthesis of Spiro-4-azolo Thiazolidinone-2,3[2(4)]-pentamethine Cyanine Dyes 5a-5g

A mixture of **4a–4e** (0.01 mmol) and 2(4)-methyl heterocyclic quaternary salts (0.02 mmol) were dissolved in acetic anhydride (10 ml). The reaction mixture was refluxed for 5–10 min, and the excess of acetic anhydride was distilled off. The cooled residue was triturated with ethanol, then filtered while hot and concentrated. The precipitated products, after dilution with water, were collected and crystallized from methanol. The characterization data of compounds **5a–5g** are listed in Table II.

Synthesis of 2-Oxime-spiro-4-azolo Thiazolidinone Derivatives 6a–6e

To a solution of **3a–3e** (0.01 mmol) and sodium nitrite (0.02 mmol) in aqueous ethanol (20 ml), conc. sulphuric acid (10 ml) was added drowse while stirring in ice-bath. The stirring was continued at room temperature for 10 min.

The precipitated products after dilution with water were collected and crystallized from ethanol. Relevant data are shown in Table II.

Synthesis of Spiro-4-azolo Thiazolidinone-2[2(4)]aza-mero Cyanine 7a–7g and 2,3[2(4)]-Aza-pentamethine Cyanine Dyes 8a–8g

A mixture of **6a–6e** (0.01 mmol) and 2(4)-methyl heterocyclic quaternary salts (0.01 and 0.02 mmol) were dissolved in ethanol (20 ml) and piperidine (0.5 ml) was added. The reaction mixture was refluxed for

10–12 h, filtered while hot, concentrated, and cooled. The solid products were separated after dilution with water were collected and crystallized from methanol to give the corresponding compounds **7a–7g** and **8a–8g** respectively. The characterization data of these dyes are listed in Table III.

REFERENCES

- A. I. M. Koraiem, R. M. Abu El-Hamd, and R. M. Abd El-Aal, *Dyes & Pigments*, 191, 14 (1990).
- [2] R. M. Abd El-Aal, J. Chem. Research (S), 128 (1997).
- [3] R. M. Abd El-Aal, Dyes & Pigments, 267, 39 (1998).
- [4] Z.-F. Dia and B.-X. Peng, Dyes & Pigments, 169, 36, 2 (1998).
- [5] Z.-F. Dia and B.-X. Peng, Dyes & Pigments, 243, 36, 3 (1998).
- [6] W. L. Lipschitz and Z. Hadidian, J. Pharmacol. Expt., 81 (1984).
- [7] Kh. M. Hassan and Z. H. Khalil, Z. Naturaforsch., 34, 1326 (1979).
- [8] S. Watanabe and T. Tani, J. Imaging Sci. Technol., 39(1), (1995).
- [9] M. Krieg and P. W. Pedmond, Photochem. Photobiol., 57, 472 (1993).
- [10] K. Tatsuno and K. Yasuo, Jpn. Pat. 07-70 453 (1995).
- [11] O. Asushi and I. Takayuki, Jpn. Pat. 06-336 086 (1994).
- [12] Y. Atsushi and A. Yasushi, Jpn. Pat. 06-199 045 (1994).
- [13] A. I. M. Koraiem, M. M. Girgis, Z. H. Khalil, and R. M. Abu El-Hamd, Dyes & Pigments, 89, 15 (1998).
- [14] A. K. Khalaflla, M. E. Hassan, and H. A. Soleman, J. Indian Chem. Soc., 318, 69 (1992).
- [15] O. K. Christian and R. Peter, J. Heterocyclic Chem., 26, 55 (1989).
- [16] R. M. Abd El-Aal, H. A. Shindy, and A. I. M. Koraiem, *Heteroatom Chem.*, 259, 8(3) (1997).